

(Autonomous) Sion (West), Mumbai – 400022

Faculty: Science Program: B.Sc.

Subject: MICROBIOLOGY

Academic Year: 2024–2025 AS PER NATIONAL EDUCATION POLICY 2020 Choice Based Credit System (CBCS)

S.Y.B.Sc. (Major)

Revised Credit Based Semester and Grading Syllabus approved by Board of Studies in Microbiology brought into effect from June 2024

Approved in academic council meeting on 7th August 2024

PROGRAM OUTCOME (PO)

At the end of an Undergraduate Program, a student would have obtained the following:

• PO1. Solving Complex Problem:

Applying the knowledge of various courses learned under a program with an ability to break down complex problems into simple components, by designing processes required for problem solving.

• PO2. Critical Thinking:

Organizing thoughts to identify assumptions, verifying the accuracy and validity of assumptions, making informed decisions that guide actions (at Institutional, Personal and Intellectual level), developing the ability to think with different perspectives and ideas.

• PO3. Reasoning ability and rational thinking:

Developing rational thinking on the basis of acquired contextual knowledge, assessing societal, public health and safety, cultural, legal, gender, ethnic and environmental issues, and performing with decisive responsibility.

• PO4. Research skill:

Utilizing the contextual knowledge in an interdisciplinary framework. Integrating research-based knowledge and research methods involving problem definition, analysis and interpretation of data, synthesis of the information to provide valid conclusions. Exercising analytical skill, research ability, creativity, for employability and collaborating with industries.

• PO5. Effective Communication skill:

Facilitating to speak, read, write and listen effectively through both formal language and in one's own mother tongue, in order to make meaning of the world around. Enabling to comprehend and write effective reports and documentation, make successful presentations, give and receive clear instructions.

• PO6. Proficiency with ICT:

Equipping to create, select, apply appropriate tools and techniques, resources through electronic media for the purpose of gathering, analyzing data and drawing inference with an understanding of its merits and demerits.

• PO7. Social Interactive Skills and team work:

Eliciting networking with people, mediate disagreement and help reach conclusions in group settings. Functioning effectively as an individual, and as a member in diverse groups, and in multidisciplinary settings exhibiting adaptability, leadership quality and team-building

• PO8. Ethical values:

Recognizing and respecting different value systems including one's own, to understand the moral dimensions of one's decisions, intention to help the society and feeling good about it, commitment to professional duties and responsibilities.

• PO9. Self-directed Learning:

Acquiring the ability to explore and gain knowledge in independent ways, keep evolving lifelong in the broad context of socio-technological changes.

• PO10. Sensitization towards Environment and Sustainability:

Understanding the need for sustainable development and concern for environmental issues, realizing the importance of cohabitation, co-evolution in our achievements of sustainable development goal

• PO11. Gender Sensitization:

Demonstrating knowledge and understanding of gender equity-issues and gender justice.

• PO12. Civic Values and Global Citizenship:

Expressing empathetic social concern while helping others when their rights are violated, no matter where in the world they live, to act with an informed awareness on issues, to participate in civic life by volunteering for social justice.

PROGRAMME SPECIFIC OUTCOMES (PSO) (FOR MICROBIOLOGY)

• PSO1: Students will be introduced to the subject of Microbiology which is not taught at the junior college

- PSO2: Eloquence in specific phraseology pertaining to the subject of microbiology.
- PSO3: Familiarize with the theories and techniques of the various areas in microbiology.

• PSO4: Obtain expertise in essential practical techniques required in microbiological analysis and prepare for advance studies.

• PSO5: Discuss the applications of microorganisms in the various fields of microbiology.

Course code	MAJOR PAPER I	
	SEMESTER III	
SIUMIMJ211	Nucleic acid chemistry , Nanotechnology and Analytical techniques	3 Credits
		(45 lectures)
Unit-I	Nucleic acid chemistry	15 lectures
Unit-II	Nanobiotechnology, biofilms & biosensors with applications	15 lectures
Unit-III	Analytical techniques – I	15 lectures
	PRACTICALS	1 Credit

Course code	MAJOR PAPER II	
	SEMESTER III	
SIUMIMJ212	Water Microbiology , Epidemiology & Immunology	3 Credits
		(45 lectures)
Unit-I	Potable water & Sewage Microbiology	15 lectures
Unit-II	Epidemiology & Diagnostic Microbiology	15 lectures
Unit-III	Introduction to Immunology	15 lectures
	PRACTICALS	1 Credit

Course code	MAJOR PAPER I	
	SEMESTER IV	
SIUMIMJ221	Metabolism and Basic Analytical Techniques	3 Credits (45 lectures)
Unit-I	Introduction To Metabolism and Bioenergetics	15 lectures
Unit-II	Enzyme Kinetics	15 lectures
Unit-III	Analytical techniques II	15 lectures
	PRACTICALS	1 Credit

Course code	MAJOR PAPER II	
	SEMESTER IV	
SIUMIMJ222	Dairy Microbiology, Food Microbiology and Taxonomy	3 Credits
		(45 lectures)
Unit-I	Dairy Microbiology	15 lectures
Unit-II	Food Microbiology	15 lectures
Unit-III	Microbial Taxonomy	15 lectures
	PRACTICALS	1 Credit

S.Y.B.Sc. MICROBIOLOGY SYLLABUS

SEMESTER III MAJOR PAPER I

Course: Nucleic acid chemistry, Nanotechnology and Analytical techniques

Course code: SIUMIMJ211

Course Outcomes (CO)

- 1. Understanding the nucleic acid molecules & central dogma, genetic code as the basis of life, DNA mutations and studying their effects on the genetic code and defining the different genetic elements
- 2. Discriminate between the techniques of nanoparticles, biofilm and biosensor and comparatively evaluate their applications.
- 3. Understanding the principle and working of spectroscopic and electrophoretic techniques and their applications.

Course code SIUMIMJ211	MAJOR PAPER I Nucleic acid chemistry, Nanotechnology and Analytical techniques	3 CREDITS
UNIT	TOPIC	LECTURES
Unit I	Nucleic acid chemistry and Genetic elements 1.1 Nucleic acid chemistry- Denaturation of double helical	15L
	DNA and RNANucleic acid from different species can	
	form Hybrids, Nucleotides and nucleic acids undergo non	
	enzymatic transformations, DNA methylation	
	1.2 Other Functions of nucleotides	
	1.3 Central dogma of life, Genetic code	
	1.4 Plasmids and types of Plasmids	
	1.5 Transposons (Structure and Types)	

Unit II	Nanobiotechnology, Biofilms and biosensors with	15L
	applications	
	2.1 Nanobiotechnology:	
	• Introduction of Nanobiotechnology,	
	• Types of nanomaterials, nanoparticles,	
	nanocapsules, nanotubes, liposomes, nanogels,	
	Dendrimers, Gold nanoparticles(Definitions)	
	• UV characterization of nanoparticles	
	Application in drug and gene delivery	
	2.2 Biofilms and biosensors	
	• Biofilms: Introduction of biofilms, Types of	
	biofilms, Mechanism of formation of biofilmsand	
	applications of biofilms.	
	• Biosensors: Introduction, design, workingand	
	applications of biosensors	
Unit III	Analytical Techniques I	15L
	3.1 Spectroscopic Techniques- Visible, UV and IR	
	spectrophotometry Principles, instrumentation and	
	applications	
	3.2 pH meter: principle, instrumentation and	
	Application	
	3.3 Electrophoresis - General principles, Factors affecting	
	electrophoresis, apparatus, support media- agarose gels,	
	polyacrylamide gels & applications	

S.Y.B.Sc. MICROBIOLOGY SYLLABUS

SEMESTER III MAJOR PAPER II

Course: Water Microbiology, Epidemiology & Immunology

Course code: SIUMIMJ212 Course Outcomes (CO)

- 1. Review of freshwater and sewage microbiology and understanding the methods of potability testing and sewage treatment.
- 2. Study the epidemiological methods of disease and evaluate different diagnostic techniques in diagnostic microbiology.
- 3. Distinguish between different types of immunity and review their role in disease Control.

Course code	MAJOR PAPER II	3 CREDITS
SIUMIMJ212	Water Microbiology, Epidemiology & Immunology	
UNIT	TOPIC	LECTURES
Unit I	Water Microbiology-Fresh Water and Sewage Microbiology	15L
	1.1 Fresh water environments and micro-organisms	
	found in Springs, rivers and streams, Lakes, marshes	
	and bogs	
	1.2 Potable water: Definition, water purification, water	
	quality standards and pathogens transmitted through	
	water	
	1.3 Microbiological analysis of water:	
	Indicator organisms and their detection in water-Total	
	Coliforms, Faecal Coliforms and E. coli, Faecal	
	Streptococci, Clostridium perfringens	
	1.4 Modern Waste Water treatment: Primary, Secondary	
	& Tertiary treatment	
	1.5 The nature of wastewater and Monitoring of waste	
	water treatment process (BOD,COD)	
	1.6 Removal of Pathogens by Sewage treatment	

	Processes	
	1.7 Oxidation Ponds and Septic tanks	
	1.8 Sludge Processing	
	1.9 Disposal of treated waste water and biosolids.	
Unit II	Epidemiology and Diagnostic Microbiology	15L
	2.1 Epidemiological terminology: Epidemiology, sporadic	
	diseases, endemic diseases, Hyperendemic Diseases,	
	Epidemic Diseases,	
	Index Case, Pandemic Disease, Outbreak	
	2.2 The Spread of Infection:	
	a) Reservoirs of infection-Human reservoir, Animal	
	reservoir, non-living reservoir.	
	Transmission of Disease- Contact transmission,	
	Vehicle Transmission and vectors	
	2.3 Nosocomial infection: (1L)	
	Microorganisms in hospitals, compromised host,	
	Transmission and control of Nosocomial infection	
	2.4 Isolation of Pathogens from clinical specimens:	
	a) Growth media and Culture	
	b) Collection of specimens, handling and transport	
	c) Types of specimens and their cultureBlood,	
	Urine, Faeces, sputum, Cerebrospinal fluid, pus,	
	genital and culture of Anaerobes.	
	2.5 Identification of microorganisms from specimens:	
	a) Microscopy	
	Growth-Dependent Identification Methods	
	2.6 Rapid Methods of Identification: Molecular Methods and	
	Analysis of Metabolic Products:	
	a) Nucleic Acid –Based Detection Methods	
	b) Gas liquid Chromatography	
	Plasmid Fingerprinting	

Unit III	Introduction to Immunology	15L
	3.1 Basic concepts in immunology Hematopoiesis, Blood cell	
	types, Components of immune system – Cells and organs of	
	the immune system	
	3.2 Humoral and Cell mediated immune response	
	3.3 Phagocytosis and Acute and chronic inflammation	

S.Y.B.Sc. MICROBIOLOGY SYLLABUS

SEMESTER III

Course code	PRACTICALS	1 Credit
SIUMIMJP211	MAJOR PAPER I	1 Credit
	TOPIC	
	1. Estimation of total sugars by Anthrone method Estimation of	
	reducing sugar by DNSA method	
	2. Estimation of protein Biuret method (indirect and direct)	
	3. Estimation of DNA by DPA method	
	4. Estimation of RNA by Orcinol Method	
	5. Preparation of Nanoparticles and their characterization using UV	
	Spectrophotometer	
	6. Introduction to colorimeter and study of λ_{max}	
	7. Data representation and interpretation	
	8. U.V. spectrophotometer (Demo)	
	9. DNA estimation by UV Spectrophotometer technique	
	10. Working of a pH meter	

Course code	PRACTICALS	1 Credit
SIUMIMJP212	MAJOR PAPER II	1 Credit
	TOPIC	
	1. Determination of total solids in wastewater	
	2. Determination of BOD and COD of wastewater	
	3. Visit to a sewage treatment plant or water purification plant	
	4. Use of Selective and Differential Solid Media: Mac Conkeys	
	agar, SS agar, XLD agar, TCBS agar, SIBA, Salt Mannitol	
	agar, CLED agar, Cetrimide agar	
	5. Blood staining by the Field's method	
	6. Preparation of serum and plasma	

SYBSc Microbiology Syllabus Semester - 4

MAJOR PAPER I

Course: Metabolism and Basic Analytical Techniques

Course code: SIUMIMJ221

Course Outcomes (CO)

- 1. Understanding the principles of bioenergetics with respect to cellular metabolism.
- 2. Understanding the enzyme kinetics and summarizing the various factors affecting enzyme kinetics.
- 3. Understanding the principle and working of chromatographic and centrifugation techniques and their applications.

COURSE CODE	MAJOR PAPER I	3 CREDITS
SIUMIMJ221	Metabolism and Basic Analytical Techniques	45 LECTURES 3 CREDITS
UNIT	TOPIC	LECTURES
Unit I	Introduction To Metabolism and Bioenergetics	
	1.1 Bioenergetics and thermodynamics:	
	Energy transformations, thermodynamic quantities, standard -free	
	energy, difference between $\Delta G \& \Delta G_o$	
	1.2 Structure of ATP, phosphoryl group transfer and ATP, Types of	
	energy – rich compounds, multi-roles of ATP, inorganic phosphoryl	
	group donor	
	1.3 Biochemical and chemical reactions, Biological oxidation-	
	reduction reaction	
Unit II	Enzyme Kinetics	15L
	2.1 Introduction of Enzymes:	
	General properties of enzymes	
	Concept of activation energy	
	• Rate law for a simple catalyzed reaction	
	Michaelis-Menten equation and it's derivation	

	Lineweaver Burk plot Classification of enzymes	
	Classification of enzymes	
	2.1 Overview of Coenzyme:	
	Coenzymes: Different types and reactions catalyzed by	
	coenzymes NAD ⁺ : structure, occurrence and biochemical	
	function	
	2.3 Enzyme Kinetics:	
	Saturation kinetics	
	• Effect of temperature and pH	
	• Effect of Inhibitors- Reversible and irreversible,	
	competitive, Noncompetitive and uncompetitive inhibitors	
	• Multisubstrate reactions- Ordered, Random and pingpong	
	reactions.	
	Allosteric effects in enzyme catalysed reactions- Koshland-	
	Nemethy and Filmer model and Monod, Wyman and	
	Changeux model	
Unit III	Analytical techniques 3.1 Paper and thin layer Chromatography: Introduction to	15
	chromatography, types of chromatography Paper chromatography:	
	Principle, circular, ascending and descending Paper	
	Chromatography, Thin layer chromatography :principle,	
	preparation of TLC plates, procedure forTLC, preparative TLC, 2D	
	TLC, HPTLC	
	3.2 Column chromatography : Introduction and principleSize Exclusion	
	chromatography, Ion Exchange chromatography, Affinity	
	chromatography, High Performance Liquid chromatography Gas	
	chromatography	
	3.3 Centrifugation Introduction : basic principles of sedimentation,	
	Types, Preparative centrifugation and its applications, Analytical	
	centrifugation and its applications	
-		

MAJOR PAPER II

Course: Dairy Microbiology, Food Microbiology and Taxonomy

Course code: SIUMIMJ222

Course Outcomes (CO)

- 1. Define the basics of dairy microbiology and applying the role of microbes to develop dairy products.
- 2. Understand the role of microbes in food microbiology with respect to food production, spoilage and preservation.
- 3. Classify microorganisms based on taxonomic principles and evaluate the different methods of microbial taxonomy.

COURSE CODE	MAJOR PAPER II	3 CREDITS 45 LECTURES
SIUMIMJ222	Dairy Microbiology, Food Microbiology and Taxonomy	
UNIT	TOPIC	LECTURES
Unit I	Dairy Microbiology	15L
	1.1 Milk- Definition, composition, Spoilage of milk: Sources of	
	contamination of milk. Color defects, Flavour defects, Ropiness of	
	milk Stormy fermentation of milk	
	1.2 Pasteurization of milk	
	• LTLT, HTST, UHT Method	
	Efficiency testing of Pasteurization (Phosphatase Test)	
	• Milk products- production of a Yoghurt, Butter, Cheese-Cheddar	
	and Cottage cheese, Dried milk.	
	1.3 Quality control of milk:-	
	Rapid platform test:- MBRT, Resazurin	
	Microbiological analysis of milk:- SPC, Coliformcount,	
	Psychrophiles, Thermophilic count.	

Unit II	Food Microbiology	15L
	2.1 Introduction: Significance, food as a substrateand sources,	
	Intrinsic and extrinsic factors	
	2.2 General Principles of spoilage: Spoilage of fresh foods: fruits and	
	vegetables, eggs, meat, poultry and seafood.	
	2.3 General principles of food preservation (principle of each method	
	and example of foods only):	
	High temperature (Including TDT, TDP, D, F and Z value), Low	
	temperature (Freezing), Asepsis, Drying, Radiations, Chemical	
	preservatives	
	2.4 Food control agencies:- HACCP, FDA, FSSAI	
	2.5 Methods of detection of microorganisms in food:overview of	
	cultural, microscopic, physical, chemical and bioassay methods	
Unit III	Microbial Taxonomy	15
	3.1 Introduction to microbial taxonomy	
	3.2 Systems of classification(Cavalier Smith 6 kingdom) Bergey's	
	manual	
	3.3 The three domain concept based on phylogeny- Nomenclature,	
	Taxonomic ranks, Numerical Taxonomy	
	3.4 Methods of analysis used in classification: Phenotypic analysis	
	(Morphological characteristics Physiological and metabolic	
	characteristics, Biochemical characteristics, Ecological characteristics,	
	Fatty acid analysis).	
	3.5 Microarray Nucleic acid sequencing types, Phylogenetic tree:	
	concept	

SYBSc Microbiology Syllabus Semester 4

COURSE CODE	PRACTICALS	1 Credits
SIUMIMJP221	MAJOR PAPER I	1 Credit
	1. Problems on bioenergetics to calculate the Keq; Gibbs energy,	
	enthalpy, etc	
	2. Effect of pH, Temp, substrate and enzyme concentration on activity of	
	invertase.	
	3. Determination of K_m and V_{max} of an enzyme	
	4. Separation and identification of amino acids by ascending paper	
	chromatography	
	5. Density gradient centrifugation and sizing of yeast cells	

COURSE CODE	PRACTICALS	1 Credits
SIUMIMJP222	MAJOR PAPER II	1 Credit
	1. Visit to Food/Dairy industry	
	2. RPT of Milk– RRT, MBRT, DMC	
	3. Isolation of food spoilage agent:	
	4. Fruit/Vegetable- Physical and Microscopic and Pectinolytic agent	
	5. Meat - Proteolytic, lipolytic, saccharolytic	
	6. Identification of bacteria using Bergey's Manual	